

FLUX GmbH Bahnhofstrasse 32 5280 Braunau am Inn, Austria Tel: +43 7722 20764 office@flux.gmbh

Absolute Angle Encoder

"GMI-ANGLE" Series

based on the

Giant Magneto Impedance (GMI) principle

Technical Datasheet

2024-02 - rev.05

www.flux.gmbh

Table of contents:

_

1. GMI-ANGLE encoders	4
1.1. Giant Magneto Impedance principle (simplified)	5
1.2. Holistic, 360° scanning principle	6
1.3. Environmental and EMC immunity	7
2. GMI-ANGLE encoder specification	8
3. Mechanical dimensions and mounting tolerances	11
3.1. GMI-ANGLE encoder size 96 mm: GMI-ANG-096	11
3.1.1. Stator for GMI-ANG-096: GAS-096	12
3.1.2. Rotor for GMI-ANG-096: GAR-096	13
3.2. GMI-ANGLE encoder size 160 mm: GMI-ANG-160	14
3.2.1. Stator for GMI-ANG-160: GAS-160	15
3.2.2. Rotor for GMI-ANG-160: GAR-160	16
3.3. GMI-ANGLE encoder size 180 mm: GMI-ANG-180	17
3.3.1. Stator for GMI-ANG-180: GAS-180	18
3.3.2. Rotor for GMI-ANG-180: GAR-180	19
3.4. GMI-ANGLE encoder size 250 mm: GMI-ANG-250	20
3.4.1. Stator for GMI-ANG-250: GAS-250	21
3.4.2. Rotor for GMI-ANG-250: GAR-250	22
4. Mounting recommendation	23
4.1. Mounting using inner diameter - H7 sliding fit	23
4.2. Mounting using outer diameter h7 sliding fit	25
4.3. Dowel-Pin mounting	27
5. Interface description	29
6. Commissioning and Debugging	30
6.1. Mounting and commissioning	30
6.2. Debugging	30
6.3. Status LED position	31
7. Additional features	32
7.1. Multi-turn position (memory saved)	32
7.32. Setting zero position and counting direction	32
8. Cable Specification	33
8.1. Option "K01" - Cable	33
8.2. Option "K02" - Cable	34
9. Pinout and Wiring	35
9.1. Option "D150"	35
9.2. Option "M120"	36
9.3. Shield connection	37
10. Ordering code	38

11. Accessories	40
11.1. Mounting Screws	40
11.2. Dowel Pins	41
12. Revision history	42

1. GMI-ANGLE encoders

The **GMI-ANGLE** series of axial, absolute, frameless, angle encoders from FLUX GmbH offers motor feedback solutions for a wide range of applications, fitting optimally in designs that require precise positioning with exact velocity and torque control.

The **GMI-ANGLE** series of axial encoders incorporates the FLUX patented GMI (Giant Magneto Impedance) position sensor to deliver high performance feedback as part of a closed loop motion control system.

The GMI position sensor technology and encoder architecture, developed and manufactured by FLUX, are the result of 40+ years experience in encoder development and manufacturing. It addresses in a purposeful and compact manner motion control feedback design requirements calling for:

High Accuracy:

- Better than ± 4 arc sec guaranteed accuracy
- Accuracy achievable even with as much as 0.20 mm (0.008") mechanical run-out

Ease of Installation:

- Air gap between Ring Scale (Rotor) and Encoder Head (Stator): 0.30 ± 0.25mm (0.012 ±0.010")
- Ring Scale can be installed directly onto the Rotary Table Mounting Hub with screws. No special heating, cooling or press-fitting required.
- There are two dowel pin holes in each device, rotor and stator, for quick and easy centering and mounting. Alternatively, the fit of the inner or outer diameter can be used. The air gap between stator and rotor can be adjusted by using a 0.30 mm spacer foil.
- Status LED light informs installer of GOOD/BETTER/BEST alignment
- No special electronics required to verify proper Encoder installation.
- Does not require any signal- or accuracy calibration. High Accuracy and High Performance achieved via 360° sensing of the Ring Scale grating and dynamic signal compensation.

Simple Field Service:

- Ring Scale and Encoder Head do not need to be matched as a set. Replacement of one does not require replacement of both.
- In-field service can be done as simply as described above without any special electronic tools

1.1. Giant Magneto Impedance principle (simplified)

HOW THE GMI TECHNOLOGY WORKS

The magnetic field produced by the absolute magnet ring (4) induces variable electrical a.c. impedance regions within the GMI layer (3). The fluctuations in the a.c. impedance generated is transformed into an electrical signal by the absolute GMI sensor (2). This GMI sensor (2) is linked to the evaluation electronic (1), which translates the electrical signal into a digital position.

1.2. Holistic, 360° scanning principle

FLUX encoders have a holistic scanning principle, meaning that they scan and read 360° around the encoder rotor. By comparison, many other rotary encoder technologies (magnetic xMR, Hall, optical, etc.) use segment or "one point" scanning.

360° scanning has many advantages, including improved signal quality, error averaging, and, most importantly, the reduction of the eccentricity error.

Eccentricity [e] is the displacement between the geometrical center of an encoder rotor and the rotation axis. The dotted disk in the figure below is the ideal position, and the gray disk shows the eccentric location of the encoder rotor.

Sensor geometry causes FLUX encoders to inherently average out eccentricity across the circumference of the rotor, resulting in significant reduction in eccentricity error. However, a sensor with a "one-point" scanning capability will exhibit eccentricity errors [δ] over a complete rotation in the form of a sinusoidal wave.

The eccentricity error $[\delta]$ for an "one-point" encoder can be calculated using the following formula:

$$\delta["] = \pm 412 \times \frac{e \, [\mu m]}{D \, [mm]}$$

with:

- δ... encoder eccentricity error in arcseconds
- e ... eccentricity (half of the runout) in µm
- D ... encoder diameter in mm

The eccentricity may occur both statically as a result of manufacturing or mounting tolerances as well as dynamically as the result of external forces acting on the mechanical parts during operation.

A "one-point" scanning approach could partially correct the statical eccentricity with additional effort and expensive calibration procedures, but there is no possibility of correcting the dynamical eccentricity.

As a result of the 360° scanning approach of the FLUX encoders, they inherently compensate for both statically and dynamically eccentricities .

Eccentricity error is a significant source of additional error in applications that require accuracy. Using an "one-point" encoder can reduce the overall performance of the machine even for eccentricities under 20 μ m. Using different sizes of encoder, a comparison of additional errors to the positioning system is presented in the following tables for both 10 and 20 μ m eccentricities.

Additional error is the error exclusively generated by eccentricity and added to the error in the product inspection/calibration chart.

Additional error δ for e = 10 μ m				
Diameter D	FLUX GMI-ANG	One-Point		
96 mm	<± 1"	± 43"		
160 mm	<± 1"	± 26"		
180 mm	<± 1"	± 23"		
250 mm	<± 1"	± 16"		

Additional error δ for e = 20 μ m				
Diameter D	FLUX GMI-ANG	One-Point		
96 mm	<± 2"	± 86"		
160 mm	<± 1"	± 52"		
180 mm	<± 1"	± 46"		
250 mm	<± 1"	± 32"		

1.3. Environmental and EMC immunity

FLUX angle encoders based on Giant Magnetic Impedance (GMI) offer exceptional immunity to environmental and electromagnetic perturbations.

GMI-ANGLE encoders come standard with an IP67 rating. Moreover, the angle encoder can work in extreme environmental conditions, and its performance is not compromised by dust, condensation, or solvents.

2. GMI-ANGLE encoder specification

*GMI-ANGLE-160 (size 160mm)

GMI-ANGLE size (OD)	96 mm	160 mm	180 mm	250 mm
System data				
Туре	Axial, frameless GM	, true absolute Gia I Technology - FL	n t Magneto Impe UX GmbH proprie	dance encoder tary
Standard resolution	23 bits	24 bits	24 bits	25 bits
High accuracy ⁽¹⁾	± 8"	± 5.5"	± 5.5"	± 3"
(option "C")	± 40 µrad ± 26 µrad ± 26 µrad		± 16 µrad	
Standard accuracy	± 14"	± 7"	± 7"	± 4"
	± 70 µrad	± 35 µrad	\pm 35 µrad	± 20 µrad
Hysteresis	none			
Repeatability	1 resolution count			
Position update rate and signal latency	Real-time			
Standard maximum speed	2'000 rpm (higher on request)			
Power-up time	max. 0.8 sec			

⁽¹⁾ Achievable accuracy at nominal air-gap, while tolerances for runout, lateral displacement as well as perpendicularity of stator and rotor to the axis of rotation are all better than $20\mu m$.

Electrical data	
Supply voltage	Recommended for new projects: Option AV: min. 4.35 Vdc. max. 36 Vdc
(at encoder connector)	Available for back compatibility. Do not order for new projects: Option 5V: min. 4.35 Vdc. max. 6 Vdc Option 24V: min. 6 Vdc. Max. 30 Vdc
Reverse polarity protection	Yes
Current Consumption (w/o output terminations)	max. 150 mA @ 5 Vdc max. 40 mA @ 24 Vdc

GMI-ROT size (OD)	96 mm 160 mm		180 mm	250 mm	
Mechanical Data	Mechanical Data				
Stator base material	Stainless steel CTE ~ 10 ppm/°C				
Stator weight ⁽¹⁾	220 g	440 g	520 g	760 g	
Rotor base material	Stainless steel CTE ~ 10 ppm/°C				
Rotor weight ⁽¹⁾	115 g 320 g 320 g 490 g				
Vibration	EN 60068-2-6, 20 g, 55 2000 Hz				
Shock	EN 60068-2-27, 200 g, 6 ms				

⁽¹⁾ Guiding values, without cable

Mounting tolerances			
Nominal axial air-gap	0.30 mm		
Axial tolerance (air-gap)	±0.25 mm		
Radial tolerances (runout / lateral displacement)	0.20 mm		

Environmental data				
Temperature range - Standard (no additional option in order code)				
Operating	-20°C +85°C			
Storage	-20°C +85°C			
Temperature range - Extended (contact FLUX for more details)				
Operating	-40°C +105°C			
Storage	-55°C +125°C			
Ingress Protection	IP67			
EMC immunity	complies with EN IEC 61000-6-2			
EMC emission	complies with EN IEC 61000-6-4			

Output interfaces (See FLUX Encoders Interface Guide for complete description- www.flux.gmbh/downloads)			
Absolute: BiSS/C	BIS10, BIS20, BIS21, BIS00		
Absolute: SSI	SSI00, SSI01, SSI02, SSI03, SSI04		
Incremental: A/B/Z	INC00, INC01, INC02, INC03		
Absolute: SPI	contact FLUX for more details		
Absolute: Asynchronous	UAT00, UAT10		

3. Mechanical dimensions and mounting tolerances

3.1. GMI-ANGLE encoder size 96 mm: GMI-ANG-096

A ... axis of rotation

max. total runout tolerance GAS + GAR = 0.20mm / GAS + GAR 0.20 A max. total perpendicularity tolerance GAS + GAR = 0.20mm GAS + GAR 0.20 A Dimensions are mm.

3.1.1. Stator for GMI-ANG-096: GAS-096

Size comparison table. The 096 mm size is highlighted.

GAS-xxx	A	В	С	D
096	ø96 h7	ø50 H7	ø88	6 x ø3.40 (6x60°)
160	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
180	ø180 h7	ø130 H7	ø169	6 x ø4.50 (6x60°)
250	ø250 h7	ø200 H7	ø239	8 x ø4.50 (8x45°)

Dimensions are in mm.

Screw hole dimensions for fastener according ISO 7380-1.

3.1.2. Rotor for GMI-ANG-096: GAR-096

Size comparison table. The 096 mm size is highlighted.

GAR-xxx	A	В	С	D
096	ø80 h7	ø35 H7	ø44	6 x ø3.40 (6x60°)
160	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
180	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
250	ø230 h7	ø180 H7	ø191.50	8 x ø4.50 (8x45°)

Dimensions are in mm.

Screw hole dimensions for fastener according ISO 7380-1.

3.2. GMI-ANGLE encoder size 160 mm: GMI-ANG-160

A ... axis of rotation

max. total runout tolerance GAS + GAR = 0.20mm / GAS + GAR 0.20 A max. total perpendicularity tolerance GAS + GAR = 0.20mm GAS + GAR 0.20 A Dimensions are mm.

3.2.1. Stator for GMI-ANG-160: GAS-160

For the legacy version "5V supply voltage" the cable output is at 45° instead of 60°. Size comparison table. The 160 mm size is highlighted.

GAS-xxx	A	В	С	D
096	ø96 h7	ø50 H7	ø88	6 x ø3.40 (6x60°)
160	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
180	ø180 h7	ø130 H7	ø169	6 x ø4.50 (6x60°)
250	ø250 h7	ø200 H7	ø239	8 x ø4.50 (8x45°)

Dimensions are in mm.

Screw hole dimensions for fastener according ISO 7380-1.

3.2.2. Rotor for GMI-ANG-160: GAR-160

Size comparison table. The 160 mm size is highlighted.

GAR-xxx	A	В	С	D
096	ø80 h7	ø35 H7	ø44	6 x ø3.40 (6x60°)
160	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
180	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
250	ø230 h7	ø180 H7	ø191.50	8 x ø4.50 (8x45°)

Dimensions are in mm.

Screw hole dimensions for fastener according ISO 7380-1.

3.3. GMI-ANGLE encoder size 180 mm: GMI-ANG-180

A ... axis of rotation

max. total runout tolerance GAS + GAR = 0.20mm *f* GAS + GAR 0.20 A max. total perpendicularity tolerance GAS + GAR = 0.20mm GAS + GAR 0.20 A Dimensions are mm.

3.3.1. Stator for GMI-ANG-180: GAS-180

Size comparison table. The 180 mm size is highlighted.

GAS-xxx	A	В	С	D
096	ø96 h7	ø50 H7	ø88	6 x ø3.40 (6x60°)
160	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
180	ø180 h7	ø130 H7	ø169	6 x ø4.50 (6x60°)
250	ø250 h7	ø200 H7	ø239	8 x ø4.50 (8x45°)

Dimensions are in mm.

Screw hole dimensions for fastener according ISO 7380-1.

3.3.2. Rotor for GMI-ANG-180: GAR-180

Size comparison table. The 180 mm size is highlighted.

GAR-xxx	A	В	С	D
096	ø80 h7	ø35 H7	ø44	6 x ø3.40 (6x60°)
160	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
180	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
250	ø230 h7	ø180 H7	ø191.50	8 x ø4.50 (8x45°)

Dimensions are in mm.

Screw hole dimensions for fastener according ISO 7380-1.

3.4. GMI-ANGLE encoder size 250 mm: GMI-ANG-250

A ... axis of rotation

max. total runout tolerance GAS + GAR = 0.20mm f GAS + GAR 0.20 A max. total perpendicularity tolerance GAS + GAR = 0.20mm GAS + GAR 0.20 A Dimensions are mm.

3.4.1. Stator for GMI-ANG-250: GAS-250

Size comparison table. The 250 mm size is highlighted.

GAS-xxx	А	В	С	D
096	ø96 h7	ø50 H7	ø88	6 x ø3.40 (6x60°)
160	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
180	ø180 h7	ø130 H7	ø169	6 x ø4.50 (6x60°)
250	ø250 h7	ø200 H7	ø239	8 x ø4.50 (8x45°)

Dimensions are in mm.

Screw hole dimensions for fastener according ISO 7380-1.

3.4.2. Rotor for GMI-ANG-250: GAR-250

Size comparison table. The 250 mm size is highlighted.

GAR-xxx	А	В	С	D
096	ø80 h7	ø35 H7	ø44	6 x ø3.40 (6x60°)
160	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
180	ø160 h7	ø110 H7	ø121.50	6 x ø4.50 (6x60°)
250	ø230 h7	ø180 H7	ø191.50	8 x ø4.50 (8x45°)

Dimensions are in mm.

Screw hole dimensions for fastener according ISO 7380-1.

4. Mounting recommendation

4.1. Mounting using inner diameter - H7 sliding fit

Fig.4.1.: GMI Angle Stator (GAS) mounting using ID sliding fit

GAS-xxx	A	В	С	D
096	ø96	ø50	ø88	6 x M3 (6 x 60°)
160	ø160	ø110	ø121.50	6 x M4 (6 x 60°)
180	ø180	ø130	ø169	6 x M4 (6 x 60°)
250	ø250	ø200	ø239	8 x M4 (8 x 45°)

Dimensions are in mm.

It is advisable to utilize a medium-strength screw retainer for a secure mounting. The installation of the GMI Angle Stator (GAS) must be adapted to suit its specific application. The customer-specific mounting plate is for illustrative purposes only.

Fig.4.2.: GMI Angle Rotor (GAR) mounting using ID sliding fit

GAR-xxx	Α	В	С	D
096	ø80	ø35	ø44	6 x M3 (6 x 60°)
160	ø160	ø110	ø121.50	6 x M4 (6 x 60°)
180	ø160	ø110	ø121.50	6 x M4 (6 x 60°)
250	ø230	ø180	ø191.50	8 x M4 (8 x 45°)

Dimensions are in mm.

It is advisable to utilize a medium-strength screw retainer for a secure mounting. The installation of the GMI Angle Rotor (GAR) must be adapted to suit its specific application. The customer-specific mounting plate is for illustrative purposes only.

4.2. Mounting using outer diameter h7 sliding fit

Fig.4.3.: Stator (GAS) mounting using OD sliding fit

GAS-xxx	А	В	С	D
096	ø96	ø50	ø88	6 x M3 (6 x 60°)
160	ø160	ø110	ø121.50	6 x M4 (6 x 60°)
180	ø180	ø130	ø169	6 x M4 (6 x 60°)
250	ø250	ø200	ø239	8 x M4 (8 x 45°)

Dimensions are in mm.

It is advisable to utilize a medium-strength screw retainer for a secure mounting. The installation of the GMI Angle Stator (GAS) must be adapted to suit its specific application. The customer-specific mounting plate is for illustrative purposes only.

Fig.4.3.: Rotor (GAR) mounting using OD sliding fit

GAR-xxx	Α	В	С	D
096	ø80	ø35	ø44	6 x M3 (6 x 60°)
160	ø160	ø110	ø121.50	6 x M4 (6 x 60°)
180	ø160	ø110	ø121.50	6 x M4 (6 x 60°)
250	ø230	ø180	ø191.50	8 x M4 (8 x 45°)

Dimensions are in mm.

It is advisable to utilize a medium-strength screw retainer for a secure mounting. The installation of the GMI Angle Rotor (GAR) must be adapted to suit its specific application. The customer-specific mounting plate is for illustrative purposes only.

4.3. Dowel-Pin mounting

Fig.4.5.: GMI Angle Stator GAS Dowel-Pin mounting

The location of the dowel pin centering holes varies depending on the GMI Angle Stator GAS size. Please refer to Chapter 3 for detailed information.

It is advisable to utilize a medium-strength screw retainer for a secure mounting. The installation of the GMI Angle Stator (GAS) must be adapted to suit its specific application. The customer-specific mounting plate is for illustrative purposes only.

Fig.4.6.: GMI Angle Rotor GAR Dowel-Pin mounting

It is advisable to utilize a medium-strength screw retainer for a secure mounting. The installation of the GMI Angle Rotor (GAR) must be adapted to suit its specific application. The customer-specific mounting plate is for illustrative purposes only.

5. Interface description

Given the extensive range of interfaces provided for our encoders, we have developed a dedicated resource called the "FLUX Encoders Interface Guide." This document provides a comprehensive and detailed description of all the interfaces. You can download the document from our website at <u>www.flux.gmbh/downloads</u>.

Output interfaces (See FLUX Encoders Interface Guide for complete description)			
Absolute: BiSS/C	BIS10, BIS20, BIS21, BIS00		
Absolute: SSI	SSI00, SSI01, SSI02, SSI03, SSI04		
Incremental: A/B/Z	INC00, INC01, INC02, INC03		
Absolute: SPI	contact FLUX for more details		
Absolute: Asynchronous	UAT00, UAT10		
Other synchronous or asynchronous	contact FLUX for more details		

6. Commissioning and Debugging

6.1. Mounting and commissioning

GMI-ANGLE encoders must be mounted in accordance with the mounting tolerances described in Chapter 3. The recommended mounting options are presented in Chapter 4.

The GMI-ANGLE encoder requires no calibration or additional commissioning.

As soon as the **GMI-ANGLE** encoders are mounted according to the specifications and powered up, they will provide high accuracy and high resolution positioning over the interface.

6.2. Debugging

The **GMI-ANGLE** encoders are equipped with a status LED⁽¹⁾.

LED Color	Status	Recommended actions	
No color	System is not (correctly) Powered-Up.	Check wiring connection to the motion controller	
Red Color			
Continuous	System configuration error	Please contact FLUX	
Fast blinking ⁽²⁾	Encoder in error mode	Check encoder mounting	
Slow blinking ⁽³⁾	Out of operating range	Check encoder air-gap	
Yellow			
Continuous	Normal operation, but error was detected	Check encoder shielding connection Check encoder mounting	
Green			
Continuous	Optimal performance		
Fast blinking ⁽²⁾	Normal operation, not optimal performance	Check encoder runout	
Slow blinking ⁽³⁾	Normal operation, not optimal performance	Check encoder air gap	

⁽¹⁾ The LED's lifespan can significantly diminish when operated under extremely low or high temperatures. Even if the LED ceases to emit light, the encoder's functionality remains unaffected. ⁽²⁾ Fast blinking ~ 0.4 sec.

 $^{(3)}$ Slow blinking ~ 1.6 sec

6.3. Status LED position

The **GMI-ANGLE** encoders are equipped with a status LED. Its position for every encoder size is shown in the drawings below.

NOTE: The LED is concealed beneath the potting compound but becomes visible when the encoder is supplied with the correct voltage.

7. Additional features

7.1. Multi-turn position (memory saved)

In **GMI-ANGLE** encoders, the multi-turn position can be automatically saved at power off and restored after powering on. Therefore, even a frameless encoder such as **GMI-ANGLE** can implement a virtual multi-turn function.

The encoder does not have any mechanism for monitoring position changes when it is not powered up, so this function should only be used when movement is either not possible or restricted to less than \pm 180° when power is turned off.

Please contact us at office@flux.gmbh for more information.

7.32. Setting zero position and counting direction

The GMI-ANGLE encoder allows setting of the zero position and changing of the counting direction.

Over the BiSS-C Interface registers, both functions can be performed.

For more details, please see the full BiSS-C Interface Manual for FLUX Encoders.

Fig. 7.1.: Visualization of the positive counting direction set by default.

8. Cable Specification

8.1. Option "K01" - Cable

Туре	Encoder with integrated radial cable output			
Outer jacket	PUR, suitable for energy chains			
Halogen free	IEC 60332-1-2			
Applicable Standard	UL - AWM Style 20963 80°C 30V			
Temperature rating	dynamic: -40°C +90°C static: -50°C +90°C			
Wrapping	4 x 2 x AWG 30 + 2 x AWG 28, TPE Isolation			
Shield	Tinned copper braided. Coverage ≥ 85%			
Outer diameter	4.2 ± 0.1mm			
Bending radius	21 mm single / 42 mm continuous bending			
Maximum length	6 m			
Certification	The product does not contain any SVHC candidate substances according EU REACH regulation 1907/2006			

No.	AWG	Color	SSI & BISS/C	A/B/Z	Comments
1	28	violet	Vdd	Vdd	Encoder Supply Voltage
2	28	black	GND	GND	Encoder Power Ground
3	30	white	Sense Line-	A+	
4	30	braun	Sense Line+	A-	
5	30	green	not connected	B+	
6	30	yellow	not connected	В-	
7	30	grey	SCLK+	Sense Line+	
8	30	pink	SCLK-	Sense Line-	
9	30	blue	SDATA+	Z+	
10	30	red	SDATA-	Z-	

8.2. Option "K02" - Cable

	Encoder with integrated radial cable output			
Туре				
Recommended for:	Extended temperature ranges. Highest cable flexibility.			
Not applicable for:	Interfaces: INCxx (A/B/Z)			
Outer jacket	Silicone rubber-based			
Temperature rating	dynamic: -25°C +180°C static: -60°C +180 °C			
Wrapping	3 x 2 x AWG 30, FEP Isolation			
Shield	Tinned copper braided. Coverage ≥ 95 %			
Outer diameter	3.3 ± 0.1mm			
Bending radius	18 mm single / 36 mm continuous bending			
Maximum length	3 m			
Certification	This product contains following SCHV candidate substances according to EU REACH regulation 1907/2006: Decamethylcyclopentasiloxane, CAS-No.: 541-02-6 > 0.1% Dodecamethylcyclohexasiloxane (D6), CAS-No.: 540-97-6 > 0.1% Octamethylcyclotetrasiloxane, CAS-No.: 556-67-2 > 0.1%			

No.	AWG	Color	SSI & BISS/C	A/B/Z	Comments
1	30	red	Vdd		Encoder Supply Voltage
2	30	black	GND		Encoder Power Ground
3	30	grey	SCLK+	n 0	
4	30	blue	SCLK-	n.a.	
5	30	green	SDATA+		
6	30	yellow	SDATA-		

9. Pinout and Wiring

9.1. Option "D150"

Connector Type	DSUB, DB15, Male
Number of Pins	15

	<mark>K01</mark> - SSI	& BISS/C	<mark>K02</mark> - SSI	& BISS/C	K01 - Incremental A/B/Z		
Pin	Signal	Color	Signal	Color	Signal	Color	
1	not con	inected	not con	inected	A+	white	
2	Power Ground	black	Power Ground	black	Power Ground	black	
3	not con	nected	not con	nected	B+	green	
4	Power Supply	violet	Power Supply	red	Power Supply	violet	
5	not connected		not con	not connected		not connected	
6	not con	nected	not con	inected	not connected		
7	SDATA-	red	SDATA-	yellow	Z-	red	
8	SCLK+	grey	SCLK+	grey	Sense Line+	grey	
9	not con	nected	not con	nected	A- brown		
10	Sense Line-	white	not con	nected	not connected		
11	not con	nected	not connected		B-	yellow	
12	Sense Line+	brown	not connected		not connected		
13	not con	nected	not connected		not connected		
14	SDATA+	blue	SDATA+	green	Z+	blue	
15	SCLK-	pink	SCLK-	blue	Sense Line-	pink	

9.2. Option "M120"

Connector Type	M12 coupler, connector, male
Number of Pins	8

	K01 - SSI & BISS/C		K02 - SSI	& BISS/C	K01 - Incren	nental A/B/Z
Pin	Signal	Color	Signal	Color	Signal	Color
1	Sense Line / -	white	not con	not connected		
2	Sense Line / +	brown	not connected			
3	SDATA+	blue	SDATA+	green		
4	SDATA-	red	SDATA-	yellow	• •	
5	Power Ground	black	Power Ground black		not av	allable
6	SCLK-	pink	SCLK-	blue		
7	SCLK+	grey	SCLK+	grey		
8	Power Supply	violet	Power Supply	red		

9.3. Shield connection

The encoder's housing is connected to the cable shield. It is mandatory to connect the cable shield (and implicitly the housing) to the protection earth of the machine.

Users should exercise caution to ensure effective shielding across the entire machine and prevent any shielding/current loops.

In the case of a stainless steel housing, the surface is electrically conductive. When the stainless steel housing is attached to the machine body, it establishes an electrical connection between the cable shield and the machine body.

10. Ordering code

GMI-ANG	-096	-22	-SSI00	-AV	-K01	-100	-DB150	
Angle encoder	Diam, [mm]	Resol- [Bits]	Output Interface	Power Supply ⁽¹⁾	Cable Type	Cable length	Connector Type	Optional features
	096	19	BIS10	AV	K01	050 -0.5 m	DB150	See
	160	20	BIS20		K02	100 -1.0 m	M120	table
	180	21	BIS21			200 -2.0 m	OW -Open wires	below
	250	22	BIS00			300 -3.0 m		
		23	SS100			400 -4.0 m		
		24	SSI01			500 -5.0 m		
		25	SSI02					
			SS103					
			SSI04					
			INC00					
			INC01					
			INC02					
			INC03					
			UAT00					
			UAT01					

For optional features, please refer to the table provided below. When placing your order, include the desired features' code without using a dash and add them at the end of the ordering code. The standard configuration is represented by a blank entry.

Additional feature	Letter in order code
High Accuracy	С
Extended temperature	E
Multiturn (memory saved)	М
High Speed	S

Recommended cable selection matrix

	K01	K02					
Standard temperature range							
INCxx Interfaces	yes	no					
BiSS Interfaces	yes	no					
SSI Interfaces	yes	no					
Extended temperature range							
INCxx Interfaces	no	no					
BiSS Interfaces	no	yes					
SSI Interfaces	no	yes					

BiSS-C selection matrix

	resolution up to 24 bits	resolution from 25 bits
BIS00	not recommended	not recommended
BIS10	yes	no
BIS20	no	yes

11. Accessories

11.1. Mounting Screws

A set of mounting screws is included with the product.

NOTE: The use of a medium-strength screw retainer is recommended for secure mounting.

GMI-ANG	Stator	Rotor
-096	6x screws M3x8	6 x screws M3x6
	TORX socket button head ~ISO 7380-1	TORX socket button head ~ISO 7380-1
-160	6 x screws M4x8	6 x screws M4x6
	TORX socket button head ~ISO 7380-1	TORX socket button head ~ISO 7380-1
-180	6 x screws M4x8	6 x screws M4x6
	TORX socket button head ~ISO 7380-1	TORX socket button head ~ISO 7380-1
-250	8 x screws M4x8	8 x screws M4x6
	TORX socket button head ~ISO 7380-1	TORX socket button head ~ISO 7380-1

11.2. Dowel Pins

FLUX ordering code	• DP-3g6-63
Material	1.2210
Quantity	pack of 2 pieces
Compatibility	Fit with any sizes of GMI-ANGLE encoder. See Chapter 3 for dowel pin positions of every size.

Fig.11.2.: Dowel pin DP-3g6-63 dimensions

12. Revision history

Date	Version	Comments
2022-05	00	First built - based on the AMS datasheet
2023-02	01	Drawing Updates. BIS10 and BIS20 added.
2023-04	02	Typo corrected. Pinout and wires cable in 9.2 updated.
2023-06	03	Drawing Updates. Mounting screws added.
2023-11	04	Added: (1) New interfaces, (2) Zero point position, (3) Positive counting direction (4) Shield connection, (5) Power supply AV option Removed: (1) Interface description Updated: (1) Drawings updated.
2024-02	05	Supply voltages option 5V and 24V removed from the ordering code. Not available for new projects.Cable output for 5V vs AV versions defined.

All technical data is subject to change without notice.

FLUX GmbH

Bahnhofstrasse 32 5280 Braunau am Inn, Austria Tel: +43 7722 20764 office@flux.gmbh